

 © 2021 DuploCloud, Inc.

USER GUIDE

AWS
User Guide

2 © 2021 DuploCloud, Inc.

TABLE OF CONTENTS
INTRODUCTION 4

PRE-REQUISITES ... 4

AWS GUIDE 5

INFRASTRUCTURE ... 5
TENANT .. 6
QUICK START – A DOCKER MICROSERVICE ... 7
VIRTUAL MACHINES ... 9
RDS DATABASE .. 10
ELASTIC CACHE .. 11
S3 BUCKET .. 11
ELASTIC SEARCH .. 12
CONTAINERS .. 12
SECRETS MANAGER ... 16
DYNAMODB .. 16
SQS QUEUE ... 16
SNS TOPIC ... 16
KINESIS STREAM ... 17
LAMBDA ... 17
API GATEWAY ... 18
WORKSPACES .. 18
SERVICE DISCOVERY (CLOUDMAP) .. 19
IOT .. 19
CLOUD WATCH .. 20
WAF .. 20
USING AWS CONSOLE ... 23
FAQ ... 24

AWS USE CASES 26

DOCKER WEBAPP .. 26
S3 BACKED WEBAPP .. 28
SERVERLESS WEBAPP ... 35
PASSING SECRETS .. 36
MONITORING ... 36

3 © 2021 DuploCloud, Inc.

FAULTS/ALARMS .. 37
ALERTING/NOTIFICATION .. 38
CENTRAL LOGGING .. 39
BACKUP & RESTORE ... 40
DISASTER RECOVERY .. 41
COST MANAGEMENT .. 41
BIGDATA/ETL .. 42
SECURITY & COMPLIANCE ... 51
CLOUD MIGRATION (SMS) ... 51
REMOTE WORKING ... 51

ADDITIONAL DEPLOYMENT FUNCTIONALITIES 51

ADVANCED FUNCTIONS ... 51
BYOH .. 52

ADMINISTRATOR'S GUIDE 53

CONFIGURATION SCOPES ... 53
ACCESS CONTROL .. 57
ACCESSING CLOUD SERVER ... 57

VPN Access 57
SHARING ENCRYPTED DB ... 59
SSH EC2 INSTANCE .. 63

CI/CD GUIDE – KATKIT: DUPLOCLOUD’S CI/CD COMPONENT 64

FIRST DEPLOYMENT .. 65
ENVIRONMENTS ... 65
LINK REPOSITORY ... 66
PHASES .. 66
KATKIT CONFIG ... 67
ADVANCED FUNCTIONS ... 68

4 © 2021 DuploCloud, Inc.

Introduction

DuploCloud is a rules-based orchestration engine. It is the subject matter expert in digital form.
It is not a DevOps tool that requires a cloud expert to operate, but instead it is the cloud expert
itself. The software has a resume with over 500 skills that include AWS, Azure, Kubernetes,
Security and IoT among others. It allows users to build applications via a simple declarative
interface and not have to deal with low level infrastructure details like VPC, security groups, IAM,
Jenkins setup, etc. These constructs are still in play, but the DuploCloud software abstracts it
away for you by auto-generating the configuration based on application needs.

DuploCloud is single tenant software that installs in your cloud account. Users interface with the
software via the browser UI and/or API calls and all data and configuration stays within your
cloud account. All configurations that have been created and applied by the software are
transparently available to be reviewed and edited in your cloud account. Essentially, the software
auto-generates the same automation scripts that a human being would have written manually.
Here is an explainer video about the product:

DuploCloud Product Demo (AWS).mp4

Pre-requisites

• Sign-in Account: DuploCloud works off Google and O365 Oauth. To login to
DuploCloud you either need a Google or Office365 account.

• Docker Knowledge: If you are deploying a Docker based microservice using
DuploCloud then it is assumed that you are familiar with Docker.

o You should have a docker image for your application that has been tested locally
in your computer. Make sure it runs in detached mode (i.e., docker run -d option).

o The Image should have been pushed to your repository. If the repository is
private, then you will have to set the credentials for Docker hub in your
DuploCloud account.

• AWS SDK Familiarity: If you are using AWS services like S3, DynamoDB, SQS, and SNS
you must have a basic knowledge of how these services can be consumed. The interface
to create these services via DuploCloud will be very declarative and self-explanatory. You
do not need any access keys in your code to access these services. Use the AWS
constructor that does not take credentials, but takes only region which must be US-
West-2 unless otherwise specified by your enterprise administrator or during signup.

https://vimeo.com/577816574

5 © 2021 DuploCloud, Inc.

Terminologies

• Infrastructure: An infrastructure maps 1:1 with a VPC/VNET and can be in any region.
Each infrastructure has a set of subnets spread across multiple availability zones. In AWS
there is a NAT gateway for private subnets.

• Tenant or Project: Tenant or Project is a sandbox or unit of deployment. All resources in
a given tenant are isolated from another tenant via Security groups and IAM policies
(optionally VPC). For applications to be reachable outside the sandbox a Port mapping or
ELB must be created.

• User: This is an individual with a user ID. Each user could have access to one more
tenants/projects.

• Host: This is an EC2 instance or VM. This is where your application will run.

• Service: Service is your application code packaged as a single docker image and running
as a set of one or more containers. It is specified as - image-name; replicas; env-
variables; vol-mappings if any. DuploCloud also allows running applications that are not
packaged as Docker images.

• ELB: A Service can be exposed outside of the tenant\project via an ELB and DNS name.
ELB is defined as - Service name + container-port + External port + Internal-or-internet
facing. Optionally, a wild card certificate can be chosen for SSL termination. You can
choose to make it internal which will expose it only within your VPC to other
applications.

• DNS Name: By default, when a Service is exposed via an ELB, DuploCloud will create a
friendly DNS Name. A user can choose to edit this name. The domain name must have
been configured in the system by the admin.

• Docker Host or Fleet Host: If a host is marked as part of the fleet, then DuploCloud will
use it to deploy containers. If the user needs a host for development purposes, say a test
machine, then they would mark it as not part of the pool or fleet.

AWS Guide

Infrastructure

6 © 2021 DuploCloud, Inc.

A completely new isolated environment can be created for use cases from DuploCloud. Proceed
to Administrator --> Infrastructure. Click on +Add button. It opens a form where it asks to enter
basic information about the new environment.

 Once you submit the form, DuploCloud creates a new VPC with 2 subnets (private, public) in
each availability zone, necessary security groups, NAT Gateway, Internet Gateway, Route tables,
etc. DuploCloud also configures the VPC peering with the master VPC which is initially
configured in DuploCloud. Infrastructure creation takes around 10mins to complete. Once its
complete, a new plan with the same infrastructure name is automatically created and populated
with the details of the newly created infrastructure. This plan can then be used to create the
tenants.

Tenant

Create a new Tenant from the already created plan. Give a min for the DuploCloud to create the
Tenant specific SG and Instance profiles which acts as a security boundary.

7 © 2021 DuploCloud, Inc.

Quick Start – A Docker Microservice

Deployment is a three-step process.

1. Create a Host (VM)

2. Deploy the service (Application)

3. Expose the application using LB

Watch this short video that shows how to package your code in a Docker image and deploy:

DuploCloud Product Demo (AWS).mp4

• Create a Host from the menu DevOps  Hosts  EC2  +Add button above the
table. Choose the desired instance type. The available instance types are set by your
administrator or the plan you choose in DuploCloud. If you are not using this host for
hosting containers, then set the pool as none. If you want a public IP for the host, then
select the public subnet in the list of availability zones.

https://vimeo.com/577816574

8 © 2021 DuploCloud, Inc.

• Deploy a Service (application) from the menu DevOps  Containers  EKS/ Native
 +Add sign above the table. Give a name for your services (no spaces); number of
replicas; Docker image; volumes (if any). The number of replicas must be less than or
equal to the number of hosts in the fleet.

• Create an ELB from the menu DevOps  Containers  EKS/ Native  Select the
desired service from the table and click on Load Balancer tab for Configuration. The URL
suffix you specify under Health Check will be used by DuploCloud during a rolling
upgrade i.e., when a service image is changed, then DuploCloud will take down one
container replica at a time and bring up a new one. Once it’s running, then the

9 © 2021 DuploCloud, Inc.

DuploCloud agent running on the host will make a call to the URL and expects a 200 OK.
If it does not get a 200 OK, then the upgrade is paused and the user needs to update
with an image that fixes the issue.

• The DNS name for the service will be present in the Services Table. It takes about 5 to 10
minutes for the DNS name to start resolving.

• Update a Service from the menu DevOps  Containers  EKS/Native  click on Edit
button under Actions column of the Services table or Select the desired service from the
table and click on edit option under the Actions menu button.

Virtual Machines

You can create the EC2 instance from DuploCloud. Go to DevOps  Hosts  EC2  +Add
button above the table. Choose the desired instance type. The available instance types are set by
your administrator or the plan you choose in DuploCloud. If you are not using this host for
hosting containers, then set the pool as none. If you want a public IP for the host, then select the
public subnet in the list of availability zones.

10 © 2021 DuploCloud, Inc.

RDS Database

Create a MySQL, MSFTSQL, PostGRES or Aurora DB from the menu DevOps  Database 
Relational Databases  +Add button above the table.

Once the DB is created which takes about 5 to 10 mins then you can expand the created DB to
fetch the endpoint and credentials. Use this endpoint and credentials to connect to the DB from
your application running in the EC2 instance. Note that the DB is accessible only from inside the
EC2 instance (including the containers running in it) in the current tenant. The best way to pass
DB endpoint, DBName and credentials to your application is through ENV variables of the Service.

11 © 2021 DuploCloud, Inc.

Elastic Cache

Create a REDIS or Memcache from DevOps  Database  Ecache  +Add button above the
table. The best way to pass the cache endpoint to your application is through ENV variables of the
Service.

S3 Bucket

Create S3 Bucket from DevOps  Storage  S3  +Add button above the table. Provide the
name and select S3Bucket from the dropdown. The required permissions to access the S3 bucket
from VM, Lambda functions and containers is provisioned automatically through Instance
profiles and hence no Access key is required in the Application code. Application code should
use the IAM role/Instance profile approach to connect to these services i.e., the AWS SDK
constructor which only uses region should be used. Uploading the file and changing the bucket
permissions can be done directly in the AWS console which can be accessed by clicking on the

12 © 2021 DuploCloud, Inc.

>_ icon. Within this login the user will have enough permissions to configure the bucket, but no
access or security level permissions will be given.

Elastic Search

Create an Elasticsearch domain from DevOps  Analytics  Elasticsearch  +Add button
above the table.

Containers

• Built-In: Any docker container can be deployed in the VM. Go to DevOps  Containers
 EKS/Native  +Add button above the table. Give a name for your services (no
spaces); number of replicas; Docker image; volumes (if any). The number of replicas must

13 © 2021 DuploCloud, Inc.

be less than or equal to the number of hosts in the fleet. You can use AllocationTags to
deploy the container in a specific set of hosts.

• EKS: DuploCloud supports EKS and AKS out of box. Kubernetes clusters are created
during Infrastructure setup under Administrator  Infrastructure. The cluster is
created in the same VPC as the Infrastructure. Typically, it takes 10 minutes for an
Infrastructure with AKS/EKS cluster to be ready. Next, we will walk you through deploying
an application within a Tenant in Kubernetes. The application will comprise of set of VMs,
Deploymentset(pods) with an application load balancer. Pods can be deployed either
through the DuploCloud Portal or through Kubectl(HelmCharts)

o Adding Tenants: We map each tenant to a namespace in Kubernetes. For
example, if a tenant is called analytics in DuploCloud, then there will be a
namespace called duploservices-analytics in Kubernetes. All components of an
application within this tenant are placed in this namespace. Since Nodes cannot
be part of namespace in Kubernetes, we set a label called "tenantname" for all
the nodes that are launched within the tenant. For example, a node launched in
the analytics tenant will have label called "tenantname: duploservices-analytics".
Any pods that are launched through the DuploCloud UI will have appropriate
nodeselector to tie the pod to the nodes within the tenant. If you are deploying
directly via kubectl then make sure your deployment has the appropriate
nodeselector.

o Adding Hosts: Once the tenant is created. You can go to DevOps and change to
the particular tenant. Under the hosts menu, start by creating new Nodes(Hosts).
Make sure the value of pool is set to "Eks Linux" (which will be the default).

14 © 2021 DuploCloud, Inc.

o Docker registry credentials & Kubernetes secrets: These can be set DevOps 
Containers  EKS/Native tabs. Docker registry credentials are passed to the
Kubernetes cluster as kubernetes.io/dockerconfigjson. Other Kubernetes secrets
can also be set here and referenced in your deployment later.

o Adding Services: When we say services, we don’t mean a Kubernetes service, but
we mean the DuploCloud term service (See terminology at the top). You can
deploy DuploCloud services by clicking +Add button under the EKS/Native tab.
Implicitly, DuploCloud converts these services either into a deployment set or a
stateful set. If there are no volume mappings, then it is a deployment set,
otherwise it is a stateful set. Most configs are self-explanatory, for example,
Images, Replicas and environmental variables. The other advanced configuration
can be provided under the other K8 Config section. The content of this section is
a 1-1 mapping of the Kubernetes API. All types of configurations for deployments
are stateful sets and are supported, while putting the appropriate JSON under the
other K8 Config section. For example, to reference the secrets via config map, the
JSON would look like the following.
{
 "Volumes": [
 {
 "name": "config-volume",
 "configMap": {
 "name": "game-config"
 }
 }
],
 "VolumesMounts": [
 {
 "name": "config-volume",
 "mountPath": "/etc/config"
 }
]
}

o Kubectl token & config: DuploCloud provides you JIT token(15min) to access
the kubectl cluster. You can get the temporary token and the k8 cluster URL from
the Infrastructure you created. Select the Infrastructure  EKS tab. Once you
have the token and URL run these commands in your local.

kubectl config --kubeconfig=config-demo set-cluster EKS_CLUSTER -
-server=[EKS_API_URL] --insecure-skip-tls-verify

kubectl config --kubeconfig=config-demo set-credentials tempadmin
--token=[TOKEN]

15 © 2021 DuploCloud, Inc.

kubectl config --kubeconfig=config-demo set-context EKS --
cluster=EKS_CLUSTER --user=tempadmin --namespace=duploservices-
[TENANTNAME]

export KUBECONFIG=config-demo

kubectl config use-context EKS

With these commands you have configured kubectl to point and access the k8
cluster. You can now run the commands to apply the deployment
templates. kubectl apply -f nginx.yaml

apiVersion: apps/v1
kind: Deployment
metadata:
 name: nginx-deployment-g
 labels:
 app: nginx-deployment-g
spec:
 replicas: 1
 selector:
 matchLabels:
 app: nginx-deployment-g
 template:
 metadata:
 labels:
 app: nginx-deployment-g
 spec:
 nodeSelector:
 tenantname: "duploservices-stgeast1"
 containers:
 - name: nginx
 image: nginx:latest
 ports:
 - containerPort: 80

If you want longer duration tokens you can create them on your own and secure
them out of band from DuploCloud.

o Services display: Once the deployment command rruns successfully, go to the
services tab of the Tenant. You can see those deployments. Now you can attach
the load balancers for the services.

16 © 2021 DuploCloud, Inc.

o Load balancers, WAF and other workflows: These all remain the same. See
above on creation of these.

• ECS Fargate: Documentation TBD. Please contact the DuploCloud team for assistance.

Secrets Manager

Create any secrets under DevOps  App Integration  Aws Secrets  +Add button above
the table.

DynamoDB

Create DynamoDB from under DevOps  Database  DynamoDb tab  +Add button above
the table. The required permissions to access the DynamoDB from VM, Lambda functions and
containers are provisioned automatically through Instance profiles and hence no Access key is
required in the Application code. Application code should use the IAM role/Instance profile
approach to connect to these services i.e., the AWS SDK constructor which only uses region
should be used. More detailed configuration of the DynamoDB can be done directly in the AWS
console which can be accessed by clicking on the Console >_ icon. Within this login the user will
have enough permissions to configure the desired application specific details of the DynamoDB.
But no access or security level permissions will be given.

SQS Queue

Create SQS Queue from under DevOps  App Integration  SQS tab  +Add button above
the table. Refer to DynamoDB to know more about the permissions.

SNS Topic

17 © 2021 DuploCloud, Inc.

Create SNS Topic from under DevOps  App Integration  SNS tab  +Add button above
the table. Refer to DynamoDB to know more about the permissions.

Kinesis Stream

Create Kinesis Stream from under DevOps  Analytics  Kinesis tab  +Add button above
the table. Refer to DynamoDB to know more about the permissions.

Lambda

Create Lambda function from under DevOps  Serverless  Lambda tab  +Add button.
Give a name for the Lambda function and other values. This will create the lambda function.
Click on AWS console to go to the AWS console for this function. Test the function. You can look
at the tutorial above for the same or look at the AWS documentation.

• Updating Lambda Function and configuration: To update the code for the Lambda
function, create a new package with a different name and upload in S3 bucket again.
Then select the lambda function in the table and click Edit under dropdown menu in
Actions column. Make sure the right S3 bucket has been selected and provide the name
of the function. To update a function configuration like timeout memory, etc. use the
edit configuration button.

• Integrating with other resources: DuploCloud enables you to create a classic micro-
services based architecture where your Lambda function can integrate with any other

18 © 2021 DuploCloud, Inc.

resource within your tenant like S3, Dynamo, RDS or other Docker based microservices.
DuploCloud will implicitly enable the Lambda function to communicate with other
resources but block any communication outside the tenant (except ELB).

• Triggers and Event Sources: To setup a trigger or event source, the resource needs to
be created via the DuploCloud Portal. Subsequently, one could trigger directly from that
resource to the Lambda function in the AWS console menu of your Lambda function.
Resources could be S3 buckets, API Gateway, DynamoDB, SNS etc. An example trigger
via API Gateway was described in the tutorial.

• Passing Secrets: Passing secrets to a Lambda function can be done in much the same
way as passing secrets to your Docker based service i.e., using environmental variables.
For example, you can create a SQL database from the Database  RDS menu in
DuploCloud, provide username and password, then in the Lambda menu give the same
username and password. No secrets need to be stored anywhere outside like vault, git
repo, etc.

API Gateway

AWS ApiGateway RestApi is created from the DuploCloud Portal which will take care of creating
the security policies to make the API Gateway accessible to other resources (like Lambda
function) within the tenant. From the DuploCloud Portal only create the RestApi. All other
configuration for the API (like defining methods, resources and pointing to lambda functions)
should be done in the AWS console. The console for the API can be reached by selecting the API
in DevOps  Networking  API Gateway table and then clicking on the Console button
under the Actions menu. The above tutorial displays the integration of API Gateway and lambda
function.

Workspaces

19 © 2021 DuploCloud, Inc.

Individual workspaces/Devspaces can be created for the user in DuploCloud. These workspaces
will have access to all the resources in the tenant which user has access. To create a workspace
go to Administrator  Users  Select user  Devspace tab.

Once the workspace is created, it can be accessed from the Code next to Diagnostics.

Service Discovery (CloudMap)

Documentation TBD. Please contact DuploCloud team for assistance.

IoT

20 © 2021 DuploCloud, Inc.

Documentation TBD. Please contact DuploCloud team for assistance.

Cloud Watch

By default, the metrics for a resource are available in the Metrics page in DuploCloud. But some
metrics need agents to be installed in the system to collect the information, such as AWS Agent.
DuploCloud provides a way to automatically install these agents on all the hosts whenever they
are provisioned. For more information, refer
to https://portal.duplocloud.net/compliance/Implementation.html#agent-modules

WAF

Creation of a Web Application Firewall is a onetime process. Create a WAF in the AWS Console,
fetch the ID/ARN and update the plan in DuploCloud. Once the plan has the WAF it can be used
attached to the LB.

https://portal.duplocloud.net/compliance/Implementation.html#agent-modules

21 © 2021 DuploCloud, Inc.

DuploCloud also provides a WAF Dashboard through which you can analyze the traffic that is
coming in and the requests that are blocked. The Dashboard can be accessed from Security 
WAF.

22 © 2021 DuploCloud, Inc.

23 © 2021 DuploCloud, Inc.

Using AWS Console

DuploCloud users get AWS console access for advanced configurations of S3, Dynamo, SQS,
SNS Topic, Kinesis stream, and API Gateway resources that were created through DuploCloud.
ELB and EC2 parts of console is not supported yet. You can click on the AWS console icon to
take you directly to that resource in AWS console with permissions scoped to the current
tenant/project. You don't have permissions to create new resources directly from the AWS
console. You need to do them in DuploCloud. You can do all operations on resources already
created via DuploCloud. For example, you can create an S3 bucket from the DuploCloud UI and
go to AWS console to add remove files, setup static web hosting etc. Similarly, you can create a
DynamoDB in DuploCloud and use AWS console to add/remove entries in the table.

24 © 2021 DuploCloud, Inc.

FAQ

• How do I ssh into the host?
Under each host you can click on Connection details under Action dropdown which will
provide the key file and instructions to ssh.

• My host is windows how do i RDP?
Under host click on Connection details under Action dropdown, it will provide the
password and instructions to rdp.

• How do I get into the container where my code is running?
Under the services Status TAB find the host where the container is running. Then ssh into
the host (see instructions above) and then run "sudo docker ps" and get ID the
container. Then run "sudo docker exec -it containerid bash". You can tell
which one is your container by using the image id. Don't forget the sudo in docker
commands

• I cannot connect to my service URL, how do I debug?
Make sure the DNS name is resolving by running in your computer "ping ". Then we
need to check if the application is running by testing the same from within the container.
Then ssh into the host and then connect to your docker container using docker exec
command (see above). From inside the container CURL the application URL using the IP
127.0.0.1 and port where the application is running. Confirm that this works. Then CURL
the same URL using the IP address of the container instead of 127.0.0.1. The IP address
can be obtained by running ifconfig command in the container.

If the connection from within the container is fine, then exit from the container into the
host. Now CURL the same endpoint from the host i.e., using container IP and port. If this
works then under the ELB UI in DuploCloud note down the host port that DuploCloud
created for the given container endpoint. This will be in the range 10xxx or the same as
container port. Now try connecting to the "HostIP" and DuploMappedHostPort just
obtained. If this works as well but the service URL is still failing, contact your enterprise
admin or duplolive-support@duplocloud.net.

• What keys should I use in my application to connect to the AWS resources I have
created in DuploCloud like S3, Dynamo, SQS, etc.?
You don't need any. Use the AWS constructor that takes only the region as the argument
(us-west-2). DuploCloud setup links your instance profile and the resources. The host in
DuploCloud already has access to the resources within the same tenant\project.

25 © 2021 DuploCloud, Inc.

DuploCloud AWS resources are reachable only from DuploCloud Hosts on the same
account. YOU CANNOT CONNECT TO ANY DUPLOCLOUD AWS RESOURCE FROM YOUR
LAPTOP.

• What is rolling upgrade and how do I enable it?
If you have multiple replicas in your service i.e., multiple containers then when you
update your service like change an image or env variable then DuploCloud will make this
change one container at a time i.e., it will bring down the first container and bring up the
new one on that host with the updated config. If the new container fails to start or the
health check URL set by the user is not returning 200 OK, then DuploCloud will pause the
upgrade of remaining containers. A user must intervene by fixing the issue typically by
updating the service with a newer image that has a fix. If no health check URL is
specified, then DuploCloud only checks for the new container to be running. To specify
health check, go the ELB menu and you will find the health check URL suffix.

• I want to have multiple replicas of my mvc service, how do I make sure that only
one of them runs migration?
Enable health check for your service and make sure that the API does not return 200 OK
till migration is done. Since DuploCloud waits for health check to be complete before
upgrading the next service it is guaranteed that only one instance runs migration.

• One or more of my containers are showing in a pending state, how can I debug?
If it is Pending when the desired state is Running, then the image is being downloaded
so wait a few minutes. If it's been more than five minutes check the faults from the
button below the table. Check if your image name is correct and does not have spaces.
Image names are case sensitive so it should be all lower case i.e., the image name in
DockerHub should also be lower case.

If the current state is Pending when desired state is Delete then it means this container is
the old version of the service. It is still running as the system is in rolling upgrade and the
previous replica is not successfully upgraded yet. Check the faults in other containers of
this service for which the Current State is Pending with Desired State as Running…

• Some of my container status says "pending delete" what does it mean?
This means DuploCloud is wanting to remove these containers. The most common
reason for this is that another replica of the same service was upgraded but is now not
operational. Hence DuploCloud has blocked the upgrade. You might see the other
replicas in even "Running" state, but it is possible that health check is failing and that's
why the rolling upgrade is blocked. To unblock, fix the service configuration (image, env,
etc.) to an error free state.

26 © 2021 DuploCloud, Inc.

• How to create host with public IP?
While creating host, click on show advanced and select the public subnet in the list of
availability zone.

AWS Use Cases

Docker Webapp

In this demo, we will deploy a simple Hello World NodeJS web app. DuploCloud pulls Docker
images from Docker Hub. You can choose a public image or provide credentials to access your
private repository. For the sake of this demo, we will use a ready-made image available on
Duplo's repository on Docker Hub.

• Login to your DuploCloud console.

• Select DevOps  Hosts, a Host is the instance in which your Docker container will run.
You should choose a host with appropriate processing capacity for your application.

• Click on the +Add button to choose your host. Fill out the advanced options form if
required and click submit.

• You should now see your Host present in the table. Please give it a moment to
instantiate.

27 © 2021 DuploCloud, Inc.

• Next, we can create a Service. A Service is nothing but a container with user specified
image and environment variables. Let’s go ahead and click +Add button to create a new
service.

• Name the service "Test-service". For this demo we will use the latest, nodejs-hello image
from Duplo's public Docker hub repository. Fill in "duplocloud/nodejs-
hello:latest" in the Docker Image field.

• Enter the desired number of replicas you want in the swarm. Please note that each
replica runs in an individual Host, so the number of replicas must equal the number of
Hosts. For the sake of this demo, we will choose 1.

• Fill in the desired environment variables, this is ideal for credentials or application
specific configurations.

• Volume mapping is super easy, simply give the host path and container path as shown.
Please note that we highly recommend keeping the Hosts stateless and using S3 for
static assets. We will keep this field empty for this demo.

• Hit Create! Please wait a moment for the service to initialize.

• Almost there. Since the hello-nodejs image serves on port 3000 we need to create a load
balancer (LB) configuration to map external port (LB) to internal port (container).

• Select the Test-service and click on configure load balancer on the load balancer tab.
Fill the menu as shown below and click submit. This will also create a DNS name that we
can use.

28 © 2021 DuploCloud, Inc.

• Please wait for ~5 minutes as it can take a while for the DNS Route table changes to be
reflected.

• Expand Test-service and copy the URL displayed under DNS. Hit the URL in the browser
and You should see the Hello world serving our welcome message.

• Congratulations! You have just launched your first web service on Duplo!

S3 Backed Webapp

29 © 2021 DuploCloud, Inc.

In the last tutorial we deployed a NodeJS based webserver and accessed it using the DNS name
that DuploCloud created for us. In this tutorial we will take it a step further. We will create a text
file with a message and upload it to S3. Next, we will modify our NodeJS application to access
this file and display the message to every visitor. This purpose of the tutorial is to familiarize
yourself with how easy it is to manage resources on AWS using DuploCloud.

• The code in the Docker container that we used in Part 1 can be found on this repo. It's a
simple NodeJS web server. Clone this repository and make the following changes.

• Current app.js should look like this:

• Let’s make the following changes

• In the above code we added a link variable that will point to the S3 bucket that we will
create shortly, message variable is the message the text file in the S3 bucket will contain.

• We can now go ahead and create a text file with the message "My Name is Pranay",

30 © 2021 DuploCloud, Inc.

• Now that we have this file, we'll upload it to S3. Login to your DuploCloud Console and
Navigate to DevOps  Storage  S3.

• Click +Add button to create a S3 bucket, provide the resource name and click on Create.

• This will create a S3 bucket

• Now click on the AWS Console button under Actions menu, this will take us directly to
the S3 bucket in AWS console with limited access. Here, we can upload the file and
modify permissions. Select Upload and choose the text file that we created earlier. Hit
next till the end and the file should be uploaded.

31 © 2021 DuploCloud, Inc.

• Click on the file name and copy the Link for the file in the bucket.

• Now let’s assign this link to the link variable in app.js

32 © 2021 DuploCloud, Inc.

• Almost there, all we need to do now is create a Docker file and push to Docker Hub so
that DuploCloud can access it.

• I have created a simple dockerfile inspired from this Blog from NodeJS.

• We will now run the Docker build command to build out an image from this dockerfile.

33 © 2021 DuploCloud, Inc.

• And now Docker push to push it to Docker Hub

• All set! We will create a new service as we did in the last tutorial to run this new Docker
container.

• In the services tab click on the plus sign and fill the options as specified.

34 © 2021 DuploCloud, Inc.

• It's important to note here that this service along with the previous service will run in the
single host that we created in the previous tutorial! All we need to do is create a new
load balancer for this service so that we can access it.

• Click on configure Load balancer button under Load Balancer tab of the service and fill
out the form.

• As before, give it a minute and hit the freshly generated link in the browser. Voila!

35 © 2021 DuploCloud, Inc.

• So now we have two services which we can access via two different load balancers
running on a single host (EC2 instance)! Due to this tight coupling with S3 we can do all
sorts of fun stuff like store static files as well as javascript in S3.

Serverless Webapp

DuploCloud makes deploying serverless applications a breeze. A step by step tutorial on how to
deploy a Lambda application is at https://www.linkedin.com/pulse/deploy-existing-web-
applications-serverless-using-aws-thiruvengadam/

Following is a video version of the tutorial: https://youtu.be/MW62CrzVO2E

Deployment is a three-step process.

• Create a Zip file: Generate a Zip package of your Lambda code. The Lambda function
code should be at the root of the package. If you are using virtual env, all dependencies
should be packaged. Refer to the AWS documentation at
http://docs.aws.amazon.com/lambda/latest/dg/lambda-python-how-to-create-
deployment-package.html for detailed instructions on how to generate a package. We
personally prefer using tools like zappa and serverless.

• Create an S3 bucket and upload the Zip file: DevOps  Storage  S3  +Add
button above the table. Give a name for your bucket or leave it blank and a name will be
auto generated. Then Click on AWS Console Button to get into AWS console for this S3
bucket and upload the zip file we just created.

https://www.linkedin.com/pulse/deploy-existing-web-applications-serverless-using-aws-thiruvengadam/
https://www.linkedin.com/pulse/deploy-existing-web-applications-serverless-using-aws-thiruvengadam/
https://youtu.be/MW62CrzVO2E
http://docs.aws.amazon.com/lambda/latest/dg/lambda-python-how-to-create-deployment-package.html
http://docs.aws.amazon.com/lambda/latest/dg/lambda-python-how-to-create-deployment-package.html

36 © 2021 DuploCloud, Inc.

• Create Lambda Function: DevOps  Serverless  Lambda  +Add button above the
table. Give a name for the Lambda function and other values. This will create the lambda
function. Click on AWS console to go to the AWS console for this function. Test the
function. Refer to Lambda for more info. You can also look at the tutorial above for the
same or look at AWS documentation.

Passing Secrets

Passing secrets to the Docker based service/ Lambda function can be done using environmental
variables. For example, you can create a SQL database from the DevOps  Database  RDS
tab in DuploCloud, provide username and password, then in the Lambda menu give the same
username and password. No secrets need to be stored anywhere outside like vault, git, repo, etc.

Monitoring

Metrics of the resources created/managed in DuploCloud can be tracked under DevOps 
Metrics.

37 © 2021 DuploCloud, Inc.

Faults/Alarms

Faults that happen in the system, be it Infrastructure creation, container deployments,
Application health checks, or any Triggered Alarms can be tracked in the DuploCloud portal
under Faults Menu. You can look at Tenant-specific faults under DevOps  Faults or all the
faults in the system under Administrator  Faults. You can set the AWS Alarms for the
individual metrics, click on the bell icon on any of the metrics. A form to create an alarm shows
up. You can provide the necessary information and create the alarm.

38 © 2021 DuploCloud, Inc.

Alerting/Notification

In addition to notify you about the faults, DuploCloud integrates with Sentry, which will send an
Email alert for the fault and acts as a single place to look at all the events. To configure Sentry,
go to https://sentry.io/ Under projects create a new project. Then go to Settings  Projects 
your project  Client keys (DSN). Click on show deprecated DSN, Get the deprecated DNS
name and add it under DevOps  Faults  Update Sentry Config.

https://sentry.io/

39 © 2021 DuploCloud, Inc.

Central Logging

All the activity in the DuploCloud is logged which can be used for auditing. All the logs are saved
into Elasticsearch and can be visualized in Kibana. The URL for the Kibana is available under
Diagnostics.

40 © 2021 DuploCloud, Inc.

The ES & Kibana will be sitting inside the VPC and cannot be accessed from outside. Connect to
the VPN and access these URL.

Backup & Restore

Backup of the resources, be it DB Snaphsots, VM Snaphsots/VM AMI can be done directly under
the resource in the DuploCloud. Once the backups are done, they will be available to be restored
on the next instance creation.

41 © 2021 DuploCloud, Inc.

Disaster Recovery

Documentation TBD. Please contact DuploCloud team for assistance.

Cost Management

Usage cost for the resources can be viewed in the DuploCloud under Administrator  Billing.
You can explore the cost for any period and for any set of resources.

42 © 2021 DuploCloud, Inc.

Bigdata/ETL

• Use case:

o Collection of data from using various methods/sources

 Web scraping: Selenium using headless chrome/firefox.

 Web crowling: statis website sing crowling

 API to Data collection: It could be REST or GraphQL API

 Private internal customer data collected over various transactions

 Private external customer data collected over secured SFTP

 The data purchased from 3rd party

 The data from various social networks

o Correlate data from various sources

 Clean up and Process data and apply various statistical methods, create

 Correlate terabytes of data from various sources and make sense from the
data.

43 © 2021 DuploCloud, Inc.

 Detect anomalies, summarize, bucketize, and various aggregations

 Attach meta-data to enrich data.

 Create data for NLP and ML models for predictions of future events.

o AI/ML pipelines and life-cycle management

 Make data available to data science team

 Train models and do continues improvement trials, reinforcement
learning.

 Create anomalies, bucketize data, summarize and do various
aggragations.

 Train NLP and ML models for predictions of future events based on
history

 Create history for models/hyper parameters and data at various stages.

• Deploying Apache SparkTM cluster

In this tutorial we will create a Spark cluster with a Jupyter notebook. A typical use case is
ETL jobs, for example reading parquet files from S3, processing and pushing reports to
databases. The aim is to process GBs of data in faster and cost-effective way. The high-
level steps are: (1) Create 3 VMs one for each Spark master, Spark worker and Jupyter
notebook. (2) Deploy Docker images for each of these on these VMs.

o Create a host for Spark master: Click DevOps  Hosts  EC2  +Add button
to create hosts and click show advanced. Change the value of instance type to
'm4.xlarge' and add an allocation tag 'sparkmaster'.

44 © 2021 DuploCloud, Inc.

o Create host for spark worker: Create another host for the worker. Change the
value of instance type to 'm4.4xlarge' and add an allocation tag
'sparkworker'. Click on submit. The number of workers depends on how much
load you want to process. You should add one host for each worker. They should
all have the same allocation tag 'sparkworker'. You can add/remove workers
and scale up or down the worker Spark service as many times as you want. We
will see in the next steps:

o Create host for jupyter: Create one more host for Jupyter notebook. Choose the
value of instance type to 'm4.4xlarge' and add the allocation tag as 'jupyter'.

45 © 2021 DuploCloud, Inc.

o Create spark master Docker service: Go to Containers  EKS/ Native 
Services and create new service. Under name choose 'sparkmaster', image
'duplocloud/anyservice:spark_v6', add the allocation tag
'sparkmaster'. In the Docker host config select Host network. By setting this in
Docker Host config you are making the container networking the same as the VM
i.e., container IP is same as VM.

o Create Jupyter service: First we need the IP address of Spark master. Click on
Spark master service and on the right expand the container details and copy the
host IP. Create another service, under name choose 'jupyter', image
'duplocloud/anyservice:spark_notebook_pyspark_scala_v4', add
the allocation jupyter and select Host network for Docker Host Config, Add

46 © 2021 DuploCloud, Inc.

volume mapping "/home/ubuntu/jupyter:/home/jovyan/work", Also
provide the environment variables {"SPARK_OPTS":" --master
spark://<>:7077 --driver-memory 20g --executor-memory 15g -

-executor-cores 4 "}, replace <> with the IP you just got above.

o Create Spark workers: Create another service name ‘sparkworker’, image
'duplocloud/anyservice:spark_v7', add the allocation sparkworker and
select Host network for Docker Host Config. Also provide the environment
varibales { "node": "worker", "masterip": "<"}, replace <> with the IP
you just got above. Depending on how many worker hosts you have created, use
the same number under replicas and that is the way you can scale up and down.
At any time, you can add new hosts, set the allocation tag sparkworker and then
under services, edit the sparkworker service and update the replicas.

47 © 2021 DuploCloud, Inc.

o Create Docker services shell : Add/update shell access by clicking on >_ icon.
This gives you easy access into the container shell. You will need to wait for 5
minutes for the shell to be ready. Make sure you are connected to VPN if you
choose to launch the shell as internal only

o Open Jupyter docker shell: Select Jupyter service and expand the container.
Copy the hostip and then click on >_ icon.

o Get Jupyter URL: Once you are inside the shell. Enter 'jupyter notebook list' to
get the URL along with auth token. Replace the Ip with Jupyter ip you copied
previously.

48 © 2021 DuploCloud, Inc.

o Open Jupyter: In your browser, invoke the Jupyter URL and you should be able
to see the UI.

Now you can use Jupyter to connect to data sources and destinations and do ETL jobs.
Sources and destinations can include various SQL & NoSQL databases, S3 and various
reporting tools including big data and GPU=based Deep learning.

• Jupyter with an ETL Use-case

In this tutorial we will create a Jupyter notebook and show some basic web scraping,
using Spark for preprocessing, exporting into schema, do ETLs, join multiple dataframes
(parquets), and export reports into MySQL.

o Scrape data from Internet: Connect to a website and parse html (using jsoup)

49 © 2021 DuploCloud, Inc.

o Download data: Extract the downloaded zip. This particular file is 8 GB in size
and has 9 million records in csv

o Save to S3 Upload the data to Aws S3

o Connect to spark cluster Also Configure session with required settings to read
& write from Aws S3

50 © 2021 DuploCloud, Inc.

o Load data in spark cluster

o Define schema

o Do data processing

o Spark SQL

51 © 2021 DuploCloud, Inc.

o Spark SQL joins 20 GB of data from multiple sources

o Export reports to RDS for UI consumption Generate various charts and graphs

Security & Compliance

Refer to Compliance

Cloud Migration (SMS)

Documentation TBD. Please contact DuploCloud team for assistance.

Remote Working

Refer to Workspaces

Additional Deployment functionalities

Advanced Functions

• Allocation tags: By default, DuploCloud spreads the container replicas across the hosts.
By virtue of allocation tag the user can pin a container to a set of hosts that have a
specific tag. Click on the edit icon next to allocation tag under host.  

https://portal.duplocloud.net/compliance/Implementation.html
https://portal.duplocloud.net/docs/userguide.html#workspaces

52 © 2021 DuploCloud, Inc.

"AllocationTags" as key is already pre-populated, configure the value of your choice
for example "highmemory;highcpu" or "serviceA" and click on save on the left.
Then, when creating a service, set the allocation tag value to be a substring of the above
tag, for example highmemory or serviceA. The allocation algorithm tries to pick a
host where AllocationTag specified in the service is a substring of the
AllocationTags of the host.

BYOH

If you have a host already running somewhere in the cloud or on-premise, you can bring that to
DuploCloud using BYOH functionality and let DuploCloud manage the host, let it be running the
containers or installing the compliance agents. To configure BYOH go to Deployments  Hosts
 BYO-HOSTS. Click on add and provide the name, IP Address and in the Fleet type select

53 © 2021 DuploCloud, Inc.

Native App (if you don’t, DuploCloud will not manage the containers but manage the
compliance agents on the host), provide the username, password/Private key file. Make sure the
SSH access to the host is opened to access from the DuploCloud. After the host is added in
about 5mins you can go to Security  Agents  Select Agent and see that the agent on host
is in Active state.

Administrator's Guide

Configuration Scopes

• Base Configuration: This must be set up by the user outside DuploCloud and provided
as an input to DuploCloud. This is a once in a lifetime configuration. This configuration
includes one VPC and one subnet with appropriate routes. It is recommended that you
setup at least 2 Availability Zones, one public and one private subnet in each availability
zone. All resources (EC2 instances, RDS, Elastic-cache, etc.) are placed in the private

54 © 2021 DuploCloud, Inc.

subnet by default. ELB is placed in public or private subnet based on user (tenant) choice.
DuploCloud provides a default cloud formation template that can be used if desired.

• Plan Configuration: Every tenant is part of one and only one plan. Configuration
applied at the plan level is applies to all tenants in a plan. A plan can be used to denote
say a dev environment, a class of tenants (private\public facing) etc. Following are the
plan configurations. Except of VPC and subnets rest of the parameters can be changed at
will. Plan parameters include:

{
 "Name": "devplan", /* Name of the plan */
 "Images": [/* AMIs that are made available for the
tenants */
 {
 "Name": "Duplo-Host-Docker-v1.17", /* User
friendly Name of the AMI displayed to the user */
 "ImageId": "ami-0861ea68", /* AWS AMI ID */
 "OS": "Linux"
 },
 {
 "Name": "ubuntu-dev",
 "ImageId": "ami-d83af7b8",
 "OS": "Linux"
 },
 {
 "Name": "Windows-Docker-Fleet",
 "ImageId": "ami-1977d979",
 "OS": "Windows"
 },
 {
 "Name": "Unmanaged Ubuntu-16.04",
 "ImageId": "ami-5e63d13e",
 "OS": "Linux"
 }
],
 "Quotas": [/* Limit of on the number of resources
that be used by each tenant. If none is set for a given resource type,
then there is no limit. */
 {
 "ResourceType": "ec2",
 "CumulativeCount": 2,
 "InstanceQuotas": [
 {
 "InstanceType": "t2.medium",
 "MetaData": "(2CPU, 4GB)",
 "Count": 2
 },
 {
 "InstanceType": "t2.small",
 "MetaData": "(1CPU, 2GB)",
 "Count": 2
 }

55 © 2021 DuploCloud, Inc.

]
 },
 {
 "ResourceType": "rds",
 "CumulativeCount": 1,
 "InstanceQuotas": [
 {
 "InstanceType": "db.t2.small",
 "MetaData": "(1CPU, 1.7GB)",
 "Count": 1
 }
]
 },
 {
 "ResourceType": "ecache",
 "CumulativeCount": 1,
 "InstanceQuotas": [
 {
 "InstanceType": "cache.t2.small",
 "MetaData": "(1CPU, 1.7GB)",
 "Count": 1
 }
]
 },
 {
 "ResourceType": "s3",
 "CumulativeCount": 1,
 "InstanceQuotas": [
 {
 "InstanceType": "bucket",
 "MetaData": "bucket",
 "Count": 1
 }
]
 },
 {
 "ResourceType": "sqs",
 "CumulativeCount": 1,
 "InstanceQuotas": [
 {
 "InstanceType": "queue",
 "MetaData": "queue",
 "Count": 1
 }
]
 },
 {
 "ResourceType": "dynamodb",
 "CumulativeCount": 1,
 "InstanceQuotas": [
 {
 "InstanceType": "table",
 "MetaData": "table",
 "Count": 1
 }
]
 },

56 © 2021 DuploCloud, Inc.

 {
 "ResourceType": "elb",
 "CumulativeCount": 2,
 "InstanceQuotas": [
 {
 "InstanceType": "elb",
 "MetaData": "elb",
 "Count": 1
 }
]
 },
 {
 "ResourceType": "sns",
 "CumulativeCount": 1,
 "InstanceQuotas": [
 {
 "InstanceType": "topic",
 "MetaData": "topic",
 "Count": 1
 }
]
 }
],
 "AwsConfig": {
 "VpcId": "vpc-1eafce79", /* VPC for this tenant */
 "AwsHostSg": "sg-c2d899ba", /* list of security
groups separated by ;. All hosts will be placed in this security
groups. */
 "AwsElbSg": "sg-b9d899c1", /* Security group in
which the ELB will be placed. This applies to traffic into the extenal
(VIP) of the elb. Internal Sg between hosts and ELB will be auo setup.
*/
 "AwsPublicSubnet": "subnet-0066b449;subnet-
24e25943", /* Subnets in which hpublic facing ELBs must be placed. Each
subnet corresponds to an AZ. */
 "AwsInternalElbSubnet": "subnet-0e66b447;subnet-
23e25944", /* Subnets in which internal resources like Ec2 hosts, rds
ecaache etc will be placed. If you like hosts to be public facing then
put the same public subnets here. */
 "AwsElastiCacheSubnetGrp": "duplo-cache-
aww6gk5hsy4n",
 "AwsRdsSubnetGrp": "duplo-vpc-21-resources-
dbsubnetduplo-z9fh3g59362z",
 "CommonPolicyARNs": "", /*Set of IAM policy ARNs
that will be applied to all tenants. */
 "Domain name": "" /* Name of route 53 domain that
will be used for tenant custom dns names*/
 "CertMgrResourceArns": "" /* List of certificate
arns that wil be available to the tenant for SSL termination on the
ELB. */
 },
 "UnrestrictedExtLB": false,
 "Capabilities": {
 "DisableNativeApps": false,
 "DisablePublicEps": false,
 "DisablePrivateElb": false,
 "AssignInstanceElasticIp": false,

57 © 2021 DuploCloud, Inc.

 "BlockEbsOptimization": false,
 "DisableSumoIntegration": false,
 "DisableSignalFxIntegration": false,
 "EnableTenantExpiry": false
 }
 }

• Tenant Configuration: These are the configuration that we covered in the deployment
guide.

Access Control

There are 2 types of roles, user and administrator. Each user can have access to one or more
tenants. Each tenant can be accessed by one or more users. Administrator has access to all
tenants plus the administrative functions like plan configuration, system dashboard, system
faults, etc.

Accessing Cloud Server

VPN Access

DuploCloud provisions the OpenVPN server for users to connect with the cloud resources like
EC2, RDS instances, Elastic Search, Elastic Cache etc. Below steps will guide you to connect with
VPN server using OpenVPN client.

• Setup OpenVPN client
Login to OpenVPN web portal to download OpenVPN config and client.

• Click on Profile  Settings as shown in image below

• Click the openvpn link which will open a new tab.

58 © 2021 DuploCloud, Inc.

• Login using Username and Password provided.

• Download the openvpn config and client.

59 © 2021 DuploCloud, Inc.

• Now you are ready to connect with VPN using OpenVPN client.

Sharing Encrypted DB

Sharing Unencrypted DB to other accounts is very simple and straight forward. But sharing
encrypted DB is slightly difficult. Here we will go through the steps that needs to be followed to
share the encrypted DB:

• Create a new customer managed key in AWS KMS, in the Define key usage permissions
provide the account id of the other account.

60 © 2021 DuploCloud, Inc.

• Once the key is created, go to RDS  Snapshots, select the snapshot and click Copy
Snapshot. In the encryption change the master key to the key we created before.

61 © 2021 DuploCloud, Inc.

• Once the copied snapshot is ready, as usual share the snapshot to another account by
clicking share snapshot and providing the other account id.

• 4. Now go to the other AWS account  RDS  Shared with me. Select the shared
snapshot and click copy-snapshot again and change the encryption key to the
encryption key in the account.

62 © 2021 DuploCloud, Inc.

• In the copied snapshot add a tag with Key as "Name" and Value as "duploservices-
{tenantname}" where tenantname is the tenant where u want to launch an RDS with
this snapshot.

• Go to DuploCloud portal select the tenant. Open RDS  Add new DB (+ icon) 

Give name for the new DB. In the snapshot select the new snapshot. Enter instance

63 © 2021 DuploCloud, Inc.

type and hit submit. In few mins, the DB will be created with the data from the
snapshot. You must use the existing username and password to access the DB

SSH EC2 Instance

Once you are connected to VPN. You can use the privatekey to SSH into EC2 instance.

• Download Private key
Select Tenant and navigate to Deployments --> Hosts.

• Click on the unlock icon as shown below.

64 © 2021 DuploCloud, Inc.

• Click on the key icon to download the private key. Change the permission to key file as
shown and ssh into the ec2 instance.

• Now you should be connected to the server.

CI/CD Guide – Katkit: DuploCloud’s CI/CD Component

DuploCloud provides a CI/CD framework that allows you to build, test and deploy your
application from Git HUB commits and PRs. We call it Katkit. Katkit is a arbitrary code execution
engine which allows the user to run arbitrary code before and after deployment. Katkit follows
the same notion of a "Tenant" or environment. Thus, tying together CI and CD. In other words,
the tests are run against the application in same underlying AWS topology where one's code is
running as against running them in a separate fleet of servers which does not capture the
interactions of the application with the AWS infrastructure like IAM, Security groups ELB etc.

At a high level, Katkit functions as follows:

• A repository is linked to a Tenant.

• User chooses a GIT commit to run test and deploy

65 © 2021 DuploCloud, Inc.

• Katkit deploys a service in the same tenant with the docker image provided by
DuploCloud, which is essentially like a jenkins worker and had the Katkit agent in it.

• Katkit agent in the CI container checks out the code at that commit inside the container.
It then executes ci.sh from the checked-out code. Essentially each build is a short-lived
service that is removed once the ci.sh execution is over.

• User can put any arbitrary code in ci.sh

• Katkit allows, for a given run of a commit, the user to execute code in "phases" where in
each phase Katkit repeats the above steps with a difference in the ENV variables that are
set in each phase. The code inside ci.sh is to read the env variables and perform different
actions corresponding to each phase

• Katkit has a special phase called "deployment" where it does not run ci.sh but it looks for
the servicdescription.js file (details below), replaces the docker image tag and replaces it
with the git commit sha. It is assumed that the user, before invoking the deployment
phase, has gone through a prior phase where he build a docker image which was tagged
with the git commit sha. The sha is available as an ENV variable in every phase.

First Deployment

Before using CI/CD, the first deployment of the application needs to be done via DuploCloud
menus described above. Make sure that the application works as expected. Katkit is used only
for upgrades of container images and run tests that can be written to run before and after.

Environments

In DuploCloud a standard practice is to have a separate tenant for a given logical application for
each deployment environment. For example, say an application called taskrunner would be
created as three tenants called d-taskrunner, b-taskrunner and p-taskrunner to represent dev,
beta and prod environment. In each tenant one can specify an arbitrary name for the env say
"DEV" in the menu Dashboard-->ENV. This string will be set by Katkit as an ENV variable when it
runs the tests during CI/CD and thus your test code can use this value to determine what tests
should be run in each env or for that matter take any other action.

Export Service Description

Service Description represents the topology of a service. It is a JSON file that is used by Katkit to
upgrade the running service. Go to Deployment  Services  Export. This will give a json file.
Save this as servicedescription.js under the servicedescription folder that must exist at the root

66 © 2021 DuploCloud, Inc.

of your repository. In this file search for "DockerImage": and here change the image tag to the
word <hubtag> for example change "DockerImage": "nginx:latest" to "DockerImage":
"nginx:<hubtag>". Remove the ExtraConfig and Replicas field from the file. These have env
variables and replicas which would vary from one environment to other. Hence during
deployment Katkit will retain what is already present in the current running service.

Link Repository

Once the above steps have been performed, you can link your GitHub Repository to your tenant.
In addition to the repository name, you also need to specify the "Home Branch" which is the
branch for which the PRs will be monitored by Katkit for the user to run deployments. Same
repository and branch combination can be linked in several tenants. If your repository has
several services for different tenants, then each service can be represented by a separate folder
at the root. This is Folder Path field. Katkit looks for service description file
under /servicedescription/servicedescription.js Same repository but different folders can also be
used in different tenant. Same tenant can also have different repositories.

Phases

Each CI/CD run comprises of one or more phases. There are two types of phases - execution and
deployment. In execution phase Katkit will invoke ci.sh file from the repository. The difference
between two execution phases is in ENV variables based on which user code in ci.sh can operate
differently. There can be only one deployment phase in each run. Katkit does not run ci.sh in
deployment phase but it looks for the servicdescription.js file (details below), replaces the docker
image tag <hubtag> and replaces it with the git commit sha. It is assumed that the user, before
invoking the deployment phase, has gone through a prior phase where they build a docker

67 © 2021 DuploCloud, Inc.

image which was tagged with the git commit sha. The sha is available as an ENV variable in
every phase.

Katkit Config

The above configuration customizations like Phases, ENV, etc. can be saved in the repository in a
config file called katkitconfig.js Following is an example of one such file

68 © 2021 DuploCloud, Inc.

Advanced Functions

• Bring-your-own-image: By default, all tenant CI/CD runs are executed in a docker image
specified by the administrator. This image would typically have the most common
packages for your organization. But a user can bring his own builder image and specify
the same. The image should have the Katkit agent that can be copied from the default
builder image.

• Bring-your-own-fleet or Local Fleet: By default, Katkit will run the builder containers in a
separate set of hosts, but the user can also choose to run the build container in the same
tenant hosts which is being tested.

	Introduction
	Pre-requisites

	AWS Guide
	Infrastructure
	Tenant
	Quick Start – A Docker Microservice
	Virtual Machines
	RDS Database
	Elastic Cache
	S3 Bucket
	Elastic Search
	Containers
	Secrets Manager
	DynamoDB
	SQS Queue
	SNS Topic
	Kinesis Stream
	Lambda
	API Gateway
	Workspaces
	Service Discovery (CloudMap)
	IoT
	Cloud Watch
	WAF
	Using AWS Console
	FAQ

	AWS Use Cases
	Docker Webapp
	S3 Backed Webapp
	Serverless Webapp
	Passing Secrets
	Monitoring
	Faults/Alarms
	Alerting/Notification
	Central Logging
	Backup & Restore
	Disaster Recovery
	Cost Management
	Bigdata/ETL
	Security & Compliance
	Cloud Migration (SMS)
	Remote Working

	Additional Deployment functionalities
	Advanced Functions
	BYOH

	Administrator's Guide
	Configuration Scopes
	Access Control
	Accessing Cloud Server
	VPN Access

	Sharing Encrypted DB
	SSH EC2 Instance

	CI/CD Guide – Katkit: DuploCloud’s CI/CD Component
	First Deployment
	Environments
	Link Repository
	Phases
	Katkit Config
	Advanced Functions

