
DuploCloud 
Observability

W H I T E P A P E R



2duplocloud.comDuplocloud © 2024

3

3

3

4

4

9

10

12

13

Introduction

Definition

Target Audience

Purpose

Signals

Prometheus vs OpenTelemetry

eBPF

Observability Maturity Model

Conclusion

Contents

http://duplocloud.com/


3duplocloud.comDuplocloud © 2024

Observability is a crucial aspect of any application or system. When done well, it becomes a mindset 
and culture requiring ongoing attention and dedication to provide valuable insights into the state of the 
digital footprint. This is especially important for understanding the context around errors and outages 
during critical moments when time is limited and focus is strained.

Observability can mean the difference between a happy retrospective and a painful outage. Recent 
advancements in open-source observability platforms have significantly increased the capability to 
tap into those valuable insights. Knowing the state of your application means knowing where to focus 
development efforts and being able to identify root causes in real time.

Succinctly put, in computer science theory, observability is “a measure of how well internal states of a 
system can be inferred from knowledge of its external outputs”.3 Practically speaking, observability is 
the proactive approach of designing and implementing visibility into an application to gain insights 
into its performance, issues, and failures, to know which key indicators matter most, and where to focus 
development efforts.

Observability is, by nature, a proactive approach to improving a system.1

Observability consists of collecting metrics, logs, traces, profiles, telemetry and other signals relevant to 
the team’s KPIs, along with a strategy of who to alert for critical occurrences in the system.

Observability, in reality, is about implementing and improving a culture of observability, 
which impacts both business and technical aspects of a software stack. It requires an 
ongoing effort to improve application and observability architecture continually, and it is 
most effective when there is buy-in from all stakeholders. It’s a family affair.

Our audience for this whitepaper includes:

Introduction

Definition

Target Audience

Business 
administrators

Cloud 
Engineers

Site Reliability 
Engineers

Infrastructure 
Engineers

DevOps 
Engineers

Software 
Developers

MLOps 
Engineers

Software 
Architects

Platform 
Engineers

Product Owners/
Managers

http://duplocloud.com/


4duplocloud.comDuplocloud © 2024

Observability is a rapidly advancing field with many brilliant open-source tools to choose from and 
integrate. Organizations at all levels struggle with different aspects of observability. It can be hard 
to justify spending time on it when the application code and infrastructure need attention and 
improvement. 

Even more challenging is having the necessary experience to determine which observability tools to 
choose, especially when factors like development time and high budget requirements come into play.

This whitepaper offers a framework to create a team vision for adopting observability and a roadmap 
through the ambiguity often faced when implementing an observability model.

To start, we need to take a look at signals. What is a signal?

Purpose

Signals

Numeric data or numeric representations of non-numeric data. Examples are 
the percentage of CPU usage or the total count of requests to a particular 
service. Here are a few examples of metrics that are useful for our team.

Metrics

A signal is simply an output from the system or application. 

Metrics, traces, and logs are the three main signals, and while they are often referred to as the 
foundational signals or the three pillars of observability, they are not necessarily all required at 
once. Observability is as much an art as it is a cost-budget reality, and depending on the needs of 
your teams, they may not all be needed all the time. This is explored more in-depth by the CNCF’s 
whitepaper2 and is well worth the read.

The three primary signals are metrics, tracing, and logging.

This shows statistical information about 
the duration of requests sent (via HTTP) 
to our website’s server:

It’s useful for showing the statistical 
outliers of requests that take longer 
than the rest, which signifies a delay in 
loading for the visitor. In this graphic, 
the HTTP average is only a few 
milliseconds, which is great, but some 
RPCs are between 200 ms and about 
500 ms, which can add up against 
other delays throughout the system 
and cause issues for users, which we’ll 
see better in traces.

http://duplocloud.com/


5duplocloud.comDuplocloud © 2024

Text entries from applications or systems consisting of data developers thought 
relevant and showing a step-by-step record of what happened leading up to 
a result. There are several levels of log verbosity ranging from `debug,` useful 
during development, to `critical,` which is helpful for production applications. Log 
verbosity is typically turned down as applications are deployed live to reduce 
noise, cost, and compute time.

Logs

This example shows memory (RAM) and 
CPU usage.

This is useful for seeing the application’s 
capacity to accept more workload. Those 
values are on the higher side, but there’s 
still a lot of wiggle room for Kubernetes to 
scale out, and it likely will soon.

This one is related, showing the Pods 
deployed in Kubernetes that are hungriest 
for resources.

If these Pods are supposed to be gobbling 
up memory, then everything is fine, but if 
a pod that’s supposed to be using just a 
few MiB of memory is topping the list, you’ll 
know something is going on with it, and it’ll 
need a set of eyes.

http://duplocloud.com/


6duplocloud.comDuplocloud © 2024

This dashboard shows Kubernetes events and the first section of this dashboard shows the logs 
resulting from each event.

An unhealthy Pod is something the Kubernetes scheduler will banish and replace. In contrast, one 
stating BackOff might need more immediate attention, although both are looking into what in the 
application is causing the underlying issue in the first place. ArticaftUpToDate is a friendly reporting-
for-duty type notification that may or may not be useful.

Logs are most commonly sent around in JSON format, and while they may look a little scary, it’s just a 
format that humans and machines can read. See this example of a pod currently in BackOff:

http://duplocloud.com/


7duplocloud.comDuplocloud © 2024

This dashboard also has some metrics 
describing logs, such as this graph indicating 
log event levels (in this case, warning) are the 
highest/most urgent level.

A pie chart breaking down events 
by reason and by namespace:

http://duplocloud.com/


8duplocloud.comDuplocloud © 2024

show what happens downstream in a system due to an event. Traces are useful 
for knowing how long each segment or call takes to complete and getting a full 
view of any related errors or log entries.

Traces

In this case, an example of a trace 
shows that HTTP POST requests take 
a whole hour and fifteen minutes.

The traces dashboard also includes a handy node graph to see how events are related.

As a bonus, there is a fourth main signal, `profiles,` that is becoming more and more relevant to 
cloud-native workloads.

http://duplocloud.com/


9duplocloud.comDuplocloud © 2024

Show the why behind the traces, linking the system calls the code is making 
relative to each trace. This makes it amazingly easy to drill into issues.

Profiles

To recap, metrics show you how the system is behaving as a whole; the logs show the actions the 
system is taking; the traces show how long each of those actions takes; profiles link those lengths of 
time through the code down to what the system is doing underneath it all as a result of the calls the 
code makes.

Modern observability is a wonder.

It’s worth pointing out that Prometheus is an end-to-end monitoring tool that collects metrics and 
serves as a backend to transfer, store, and query them.

OpenTelemetry is simply a signals and telemetry collector and typically uses Prometheus as its 
backend for distribution and storage.

OpenTelemetry supports traces and profiles and offers a more standardized approach to metrics, such 
as delta representation, which measures the change in value over time, with more information about 
the application and its underlying systems.

Prometheus vs OpenTelemetry

http://duplocloud.com/


10duplocloud.comDuplocloud © 2024

An open-source observability tool for Kubernetes applications. Pixie uses eBPF to 
automatically capture telemetry data without the need for manual instrumentation.

An OSS project that enables automatic instrumentation for HTTP/gRPC applications written 
in Go, C/C++, Rust, Python, Ruby, Java (including GraalVM Native), NodeJS, .NET, and more. 
It’s based on eBPF, which allows you to attach your programs to different points of the 
Linux kernel.

An open source, cloud-native solution for providing, securing, and observing network 
connectivity between workloads, fueled by the revolutionary Kernel technology eBPF.

The OpenTelemetry eBPF project develops components that collect and analyze telemetry 
from the operating system, cloud, and container orchestrators. Its initial focus is on 
collecting network data to enable users to gain insight into their distributed applications.

Pixie

Beyla

Cilium

OpenTelemetry eBPF Collector

eBPF is a promising new technology that provides a way to create helper functions that interact with 
the Linux kernel and probe it for information without modifying the actual kernel, crossing namespace 
boundaries, or installing kernel modules. Helper functions work in concert with the kernel, taking 
advantage of existing kernel functionality and tooling, and as a result, are very lightweight and safe as 
they always terminate and use an in-kernel verifier to ensure crashing the kernel isn’t possible. Likewise, 
functions are limited in length and cannot loop, ensuring they won’t use precious system resources.

eBPF functions are always event-driven and excellent for gathering tracing information and metrics.4

A list of eBPF providers:

eBPF

http://duplocloud.com/
https://docs.px.dev/
https://grafana.com/oss/beyla-ebpf
https://cilium.io
https://github.com/open-telemetry/opentelemetry-network


11duplocloud.comDuplocloud © 2024

DuploCloud has evaluated these and various eBPF tools and leverages Beyla and OpenTelemetry’s 
eBPF capabilities for its advanced tracing, metrics, and other insights into applications and distributed 
systems to offer a mature observability stack.

eBPF implemented well is likewise impactful for security and compliance due to the wealth of 
information it provides. Liz Rice, an eBPF specialist and member of the governing board at CNCF, states, 
“The more contextual information that’s available to the investigator, the more likely they will be able to 
find out the root cause of the event and determine whether it was an attack, which components were 
affected, how and when the attack took place and who was responsible.”6

eBPF functions are run through a verifier at the kernel level, preventing loops, crashes, and out-of-
bounds access so that no information from the kernel leaks into user space.

As eBPF functions are only run upon events, the attack surface is limited, and functions run inside a 
sandbox. This event-driven architecture opens up worlds of possibilities to ensure certain actions by 
the kernel are further limited and observed. Any actions of a specific type can include eBPF functions to 
verify or impose limitations, such as network traffic to isolate certain components from others based on 
network packet details. Cilium is a potent tool in this regard.

eBPF is relatively new in the observability world, and DuploCloud is proud to be an early adopter of 
such technology. To illustrate the capabilities and creative applications of eBPF, [Pixie]() currently has 
a dynamic logging functionality5 in Alpha that uses eBPF to generate structured logs of a running 
application without redeploying application code, something that is truly groundbreaking. Dynamic 
logging allows for the capturing of function arguments, function return values, and latency with little 
overhead and without stopping the execution to redeploy.

http://duplocloud.com/


12duplocloud.comDuplocloud © 2024

Collecting Telemetry and Data – Siloed data with no cohesive strategy to 
monitor the various systems owned by the organization, typically divided by 
team. Identify critical workloads, define metrics, logs, and KPIs, and aim to 
observe them together. Implement telemetry as a core part of the application 
design to understand its health and state.

Automatic and Proactive Root Cause Identification – Observability data is used 
in real-time with GenAI to provide relevant insights into issues, and options 
to resolve, all displayed in dynamic dashboards with information relevant to 
the matter at hand, saving precious time and reducing costs associated with 
querying and visualizing data that is irrelevant.

Correlation and Anomaly Detection – Context is immediately apparent through 
a maturing set of metrics, traces, and logs. Traces include relevant information 
from services external to the application, such as managed services from 
the cloud provider. Observability KPIs such as MTTR and SLOs (Service Level 
Objectives) are low. This enables organizations to increase their applications’ 
SLAs (Service Level Availability) while increasing the complexity of system 
architectures. Anomaly detectors are used to alert based on outliers that don’t 
match usual patterns. At this level, AI can correlate signals, perform RCAs, and 
suggest resolutions using custom machine learning models based on past 
collected data, a process now described as AIOps.

Telemetry Analysis and Insights – Signals from metrics, logs, and traces are 
established with visualizations and alerts in dashboards, giving teams the insight 
needed to prioritize issues. This puts teams in the driver’s seat instead of being 
reactive. However, outages and issues often overwhelm teams, requiring excess 
cognitive effort and time to debug and solve. The remedy is to identify KPIs, 
create policies such as disaster recovery, and review them regularly along with 
application architecture. This helps reduce MTTR (Mean Time to Resolution).

Foundational Monitoring

Proactive Observability

Advanced Observability

Intermediate Monitoring

With so many capable tools to choose from on the market, knowing which to focus on and when is an 
increasingly complex decision. This is where the observability maturity model comes into play. Created 
by AWS, it provides a framework to orient an organization to a mature, comprehensive observability 
stack.

It does this by breaking down observability into four stages, starting with the most important aspects 
and building from there to end up with potent insights into a digital footprint.

The observability maturity model enables startups to trailblaze a complete roadmap of current 
observability capabilities and future needs. An organization can develop a way to increase the 
resiliency and reliability of their applications. An observability maturity assessment is well worth the time 
and is a crucial building block of a robust digital footprint.

Observability done well reduces cognitive load, increases awareness, prevents downtime, and 
minimizes response time, along with providing detailed information for root cause analysis.

Observability Maturity Model

http://duplocloud.com/


13duplocloud.comDuplocloud © 2024

DuploCloud can help you perform an observability maturity assessment to identify areas of focus 
and create a plan to overcome deficiencies in your system visibility, identify issues more quickly, and 
pour a stronger foundation to improve your applications, teams, and critical business offerings. An 
observability strategy is key to your application’s growth, and DuploCloud has a team of observability 
gurus ready to draw a roadmap and begin trailblazing.

Conclusion

1.	 AWS Observability Maturity Model

2.	 CNCF TAG Observability Whitepaper

3.	 Kalman R. E., On the General Theory of Control Systems, Proc. 1st Int. Cong. of IFAC, 
Moscow 1960 1481, Butterworth, London 1961, as quoted in the CNCF TAG Observability 
Whitepaper.2

4.	 Cilium, eBPF Architecture

5.	 Pixie, Dynamic Logging

6.	 Learning eBPF: Programming the Linux Kernel for Enhanced Observability, Networking, 
and Security

Sources

http://duplocloud.com/
https://aws-observability.github.io/observability-best-practices/guides/observability-maturity-model/
https://github.com/cncf/tag-observability/blob/main/whitepaper.md
https://docs.cilium.io/en/stable/reference-guides/bpf/architecture/
https://docs.px.dev/tutorials/custom-data/dynamic-go-logging/
https://www.oreilly.com/library/view/learning-ebpf/9781098135119/
https://www.oreilly.com/library/view/learning-ebpf/9781098135119/

