
1duplocloud.com Contact Sales | sales@duplocloud.net

Containerization Best
Practices: The Definitive
Checklist for Tech Leaders

E B O O K

2duplocloud.com Contact Sales | sales@duplocloud.net

Table of Contents 2

3

4

5

5

6

6

7

7

8

8

9

9

10

11

C O N T E N T S

Introduction

Why Containers?

Docker and Kubernetes: The Container Infrastructure

Docker vs. Kubernetes

Containerization Best Practices

Summary

About Duplocloud

1. One Application Per Container

2. Containers Should Be Stateless and Immutable

3. Optimize for Build Cache

4. Reduce Image Size as Much as Possible

5. Maximize Security Posture

6. Build Logging and Monitoring Standards Into Container Architecture

7. Use Repositories like Docker Hub and Tag Images

3duplocloud.com Contact Sales | sales@duplocloud.net

Containerization is the future of cloud-native application development. Many organizations, from small
businesses to enormous enterprises like Spotify and Major League Baseball, rely on containers to build
and scale their infrastructure to meet the needs of global consumers.

There are numerous benefits to embracing a containerized application architecture:

Containers are versatile, easy to create, and can scale rapidly.

They enable developers to ensure applications can run on any device, regardless of
configuration or dependencies.

Developers can build one-off images or coordinate multiple containers through powerful
orchestration tools to serve a global user base.

According to Gartner, 95% of organizations will run containerized applications in production by 2028.
However, many organizations still rely on virtual machines to manage their legacy applications. Others
are looking to the cloud as a new frontier and investigating whether containerized development suits
their business.

Whatever your needs, DuploCloud is here to help. We’ve provided a breakdown of containerization
architecture to help you decide which is best for your use case. We’ve also included a list of best
practices for developers looking to get the most out of containerized application development,
ensuring security, performance, and longevity for their container clusters.

INTRODUCTION

4duplocloud.com Contact Sales | sales@duplocloud.net

For many years, cloud development relied on virtual machines (VMs) to migrate legacy applications
and ensure compatibility across devices. VMs can emulate specific operating system environments,
allowing multiple applications or operations to run within a single virtual machine.

However, there are several drawbacks to using VMs that make them less than ideal for modern cloud-
native development environments.

VMs are large, often taking up an ungainly amount of disk space within the network.

VMs can take a long time to spin up, making rapid scalability difficult and time-
consuming under larger application loads.

VMs require a significant amount of resources to be deployed effectively.

To meet the scalability and adaptability needs of the modern global cloud architecture, developers
began turning to containers. While containers have been in use since the 1970s, in 2013, they
became the backbone of cloud-native development with the creation of Docker, the most popular
containerization program in the world.

Containers address many of the shortcomings of virtual machines:

Containers are smaller, lightweight, and take up fewer resources than VMs.

Containers are far quicker to spin up, making them more versatile under unpredictable
workloads.

Containers typically only contain a single program, making it far easier to determine
each container’s purpose.

Containerized architecture became a necessity with the rise of microservices. Multiple containers can
work in concert through orchestration tools like Kubernetes, which provides the architecture for highly
complex cloud-native applications. However, Kubernetes is very complex, requiring extensive amounts
of coding. Tools such as DuploCloud enable developers to use Kubernetes constructs with little or no
custom coding to simplify deployment, updating, and debugging.

WHY CONTAINERS?

5duplocloud.com Contact Sales | sales@duplocloud.net

When deciding which containerization architecture your application will rely on, there are two primary
choices: Docker and Kubernetes.

Both tools are extremely useful in building and maintaining a containerized infrastructure, but they’re
best used for specific tasks; knowing what you need ahead of time will help you decide which is right
for your business. It’s also important to remember that these tools are not mutually exclusive, as
many organizations that rely on Kubernetes to orchestrate their container infrastructure use Docker to
initialize their containers.

DOCKER AND KUBERNETES: THE CONTAINER INFRASTRUCTURE

Docker Kubernetes

What is it?

Best for:

Benefits

Drawbacks

The most widely used containerization
software in the world.

Organizations of any size that need to
share and run single or small groups
of containers.

•	Easy to use: Can be up and running
within minutes.

•	Easy to share: Dockerfiles and
images can be easily uploaded
to platforms like GitHub, allowing
anyone in the world to download and
run applications on their device.

•	Simplified integration: A series of APIs
and SDKs allow Docker to integrate
easily into any development
environment.

•	Difficult to scale: While Docker does
include a Swarm Mode for managing
clusters of containers, it does not
offer the same level of automation
and orchestration capabilities as
Kubernetes.

•	Highly scalable: Automatically deploys
additional pods (i.e., extra copies of
container clusters) through horizontal
scaling, ensuring applications remain
reliable under unpredictable workloads.

•	Powerful error reduction features:
Offers automated self-healing and
rollback features, removing failing
clusters and replacing them with new
ones to keep applications running
smoothly.

•	Highly complex: Managing and
optimizing a Kubernetes cluster for
maximum efficiency requires a highly
specialized knowledge set, which some
organizations may not have.

•	Resource intensive: Kubernetes’ robust
scaling and redundancy capabilities
come with a resource cost, requiring
a significant investment in cloud
networking components.

A powerful open-source container
orchestration system.

Large organizations with the need for
extensive container orchestration and
scaling capabilities, usually for cloud-
native applications that must remain
fast and stable on a global scale.

Docker vs. Kubernetes

6duplocloud.com Contact Sales | sales@duplocloud.net

One of the most important things to remember when building your containerized infrastructure
is that containers are not virtual machines. Just because they can be configured to run multiple
applications at once doesn’t mean they should—and doing so means you’re missing out on the
key benefits of transitioning to a containerized development environment.

Instead, stick to using one application or application component per container. Limiting
containers in this way will ultimately benefit your application by:

Reducing library compatibility issues on a per-container basis.

Increasing visibility into container health to minimize errors.

Making horizontal scaling easier.

Enabling easier reuse of containers.

Improving project organization, especially when orchestrating multiple containers.

Minimizing debugging times by limiting the complexity of individual containers.

If your application relies on multiple containers operating simultaneously, you can orchestrate
them to work with Docker’s Swarm Mode or use Kubernetes to manage larger clusters.

CONTAINERIZATION BEST PRACTICES

1 One Application Per Container

7duplocloud.com Contact Sales | sales@duplocloud.net

Containers should not be treated like a traditional server — that is, you won’t want to update
applications inside a container that is built and running. Instead, you should consider containers
to be stateless and immutable.

One of the most significant benefits of using containers is how quickly developers can spin them
up as needed, especially in comparison to larger virtual machines. To optimize your build times,
ensure you’re leaning on Docker’s build cache capabilities wherever possible.

Docker images are powered by Dockerfiles, which describe the instructions for building the
container. When building an image, Docker constructs it in layers. Docker can reuse layers from a
previous build to speed up build times. Using the command --cache-from in your Dockerfile will
tell Docker to use the specified image as a source to cache build commands from, helping you
speed up future build times.

To get the most out of the build cache, put build steps that change often at the bottom of the
Dockerfile. Because Docker builds images in layers, it will use its build cache for earlier build steps
that change less frequently, helping to reduce build times more reliably.

2

3

Containers Should Be Stateless and Immutable

Optimize for Build Cache

Stateless Immutable

Instead of storing persistent data within the
container, data should be stored outside, either
within cloud storage or on external disks.

Designing containers to be stateless ensures
that they can be destroyed or rebuilt as needed
without worrying about losing crucial information.

The container should not be modified while it
exists. If you need to update content within the
container, destroy it, make your changes, build
a new image, and redeploy it.

This ensures that containers remain identical
when deployed across multiple environments.
It also makes rolling back to previous images
easier if problems are discovered within more
recent versions.

8duplocloud.com Contact Sales | sales@duplocloud.net

Another way to optimize container performance is to reduce your image size as much as
possible. Doing so will help to reduce download and upload times, enabling you to operate more
efficiently.

Smaller images tend to be less complex and rely on fewer dependencies to run. Plus, smaller
images tend to have less bloat, reducing the potential attack surface for malicious actors.

Rely on the following techniques to make your container images as small as possible:

Use multi-stage builds to create a cleaner separation between the building of
the image and the final output. Multi-stage builds also make Dockerfiles easier to
maintain.

Use the .dockerignore file to exclude files not relevant to the build, ensuring your
image only contains the files it needs to run.

Remove unnecessary tools from the containers. For example, you don’t need a
text editor in a database image, so don’t include it. Examine what you want your
container to accomplish and only have the necessary tools to achieve that task.

Like any aspect of your development pipeline, containers can act as an additional attack
surface malicious actors can exploit to gain access to sensitive systems, information, or
even the entire Kubernetes cluster. Take the following precautions when constructing your
containers to reduce the likelihood of a data breach:

Don’t use privileged containers, and avoid running container processes as
root. While there may be reasons for doing so, you should avoid these scenarios
unless absolutely necessary to limit the likelihood of a malicious actor attaining
unrestricted access.

Integrate automated vulnerability scanning to reduce the likelihood of attack.
Regular scans will help inform you of potential vulnerabilities, allowing you to plug
these security holes as they arise.

Automate infrastructural updates to ensure you’re receiving the latest security
patches.

Remember to keep containers immutable. Destroy old images, make updates,
and then redeploy to reduce the likelihood of introduced vulnerabilities entering
the cluster.

4

5

Reduce Image Size as Much as Possible

Maximize Security Posture

9duplocloud.com Contact Sales | sales@duplocloud.net

Monitoring systems are crucial to ensure your containers remain healthy, so utilize built-in data
logging systems and external platforms regularly to address performance or vulnerability issues.

For example, Docker provides a standardized way to record logs using the “docker logs”
command. Use this native logging mechanism instead of external ones to get the best insight
into individual Docker container performance.

However, getting a complete view of your entire container orchestration will require additional
external tools, especially if you’re using Kubernetes. Monitoring tools like Prometheus provide a
single pane of glass for viewing container performance, giving you at-a-glance metrics of the
entire cluster.

Additionally, configuring liveness, readiness, and startup probes into your containers will help
you automate the gathering of necessary metrics from each of the pods in your Kubernetes
cluster. That way, your monitoring system will scale up and down as pods are created or
destroyed, allowing you to restart or fix containers as needed.

Like any organization’s codebase, the quality, security, and longevity of container images and
Dockerfiles will benefit from robust version control and naming conventions.

Images are usually identified by their name and tag; these let internal developers and external
users know what image they’re downloading along with other relevant information, such as the
version number or date it was created.

Use consistent tagging policies to ensure your images are organized. You’ll also provide users
with an easy way to find and download a specific version of your image, if necessary. Many
developers rely on the Semantic Versioning Specification when tagging images, as it provides
guidelines that are commonly understood across the globe.

Images should also be uploaded to a centralized repository to provide comprehensive access
for anyone who needs to work on or download them and increase the visibility of any changes
made to the image with a version history archive. Docker Hub is a large public repository like
GitHub, which provides quick access to uploaded images and Dockerfiles from anywhere in the
world. Organizations that need a private repository can create and host their own Distribution
Registry on internal servers for increased security and privacy.

6

7

Build Logging and Monitoring Standards Into Container Architecture

Use Repositories like Docker Hub and Tag Images

10duplocloud.com Contact Sales | sales@duplocloud.net

SUMMARY

Containers unlock the full potential of cloud-native application development. However, getting the most
out of your container cluster requires following best practices that will help you optimize processing
speeds while improving container health and security. When building your containers, be sure to keep
the following in mind:

Use one application or component per container.

Containers should be stateless and immutable to maximize integrity and security.

Optimize your Dockerfiles to take advantage of the build cache for faster deployment.

Reduce image size as much as possible to optimize transfer times and reduce potential
attack vectors.

Don’t use privileged containers, avoid running processes as root, and run regular scans
and updates to maximize your security posture.

Build logging and monitoring systems into your architecture to keep container
orchestration healthy and scale your visibility into cluster performance.

Implement robust version control and naming conventions to improve usability and
reduce errors.

11duplocloud.com Contact Sales | sales@duplocloud.net

A B O U T D U P L O C L O U D

Manually configuring and building containers is an error-prone, time-consuming process,
especially if you want your infrastructure to operate on a global scale.

That’s why we developed DuploCloud: a DevOps automation platform that seamlessly
orchestrates container configuration, along with other crucial elements of the DevOps
pipeline, with a centralized no-code/low-code platform. Plus, DuploCloud provides 24/7
performance and security monitoring and reporting, ensuring that your infrastructure
remains secure and compliant, no matter how much it scales to meet user demand.

Learn more about how DuploCloud speeds up your organization’s
deployment times by a factor of ten. Contact us today for a personalized
one-on-one walkthrough, and see DuploCloud in action for yourself.

duplocloud.com

